The Impact of Water Quality Detorioration in Mangrove Forest in Semarang Coastal Area


  • Kenanga Sari SCHOOL OF LOYOLA
  • Tri Retnaningsih Soeprobowati



mangrove, metal, land subsidence, water quality


The fast-growing development and industrialization have caused various impacts on nature including heavy metal pollution, especially in the coastal area. Tambakredjo, located in the North Semarang city, is home to a large number of mangrove and animal species. Therefore, water quality is important. This study was conducted to analyze water quality in the coastal area of Tambakredjo based on physical and chemical measurements. Water quality data were collected from different sites. Physical parameters (temperature, pH, DO, EC, TDS, ORP and salinity) and chemical parameters (Total N, Total P, Pb, Cr, Cd) were observed. Multivariate statistical techniques, including Principal Component Analysis (PCA), was applied to evaluate water quality. The results showed first principal component is 76.27%, where the highest conductivity, total dissolved solids and salinity are associated with site 1. Content of Lead 1.289 ppm, Cadmium 0.021 ppm, and Chromium 0.352 ppm exceeds the water quality standard PP. No. 82/2001. It indicated that Site 1 was characterized as the most heavily polluted site because the location received pollutants from rivers and oceans. This study also examined the short-term changes of the mangrove-covered area at the side of Banjir Kanal Timur using historical map satellite images. The results show that mangrove coverage in Tambakredjo near the aquaculture area had decreased from 1,875m2 to 1,401m2. Meanwhile, on the other site, the mangrove planting effort as a restoration program is carried out, especially in the estuary of Banjir Kanal Timur to anticipate more environmental changes.


Adhikari P, Hong Y, Douglas KR, Kirschbaum DB, Gourley J, Adler R, Robert BGA. 2010. Digitized global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards. 55, 405–422.

Almahasheer H, Serrano O, Duarte C.M, Irigoien, X. 2018. Remobilization of Heavy Metals by Mangrove Leaves. Front. Mar. Sci.4(4).

Alzahrani DA, Selim EM, El-Sherbiny M. 2018. Ecological assessment of heavy metals in the grey mangrove (Avicennia marina) and associated sediments along the Red Sea coast of Saudi Arabia. Oceanologia. 60(4) 513-526.

Armiento G, Caprioli R, Cerbone A, Chiavarini S, Crovato C, De Cassan M, De Rosa L, Montereali MR, Nardi E, Nardi L. 2020. Current status of coastal sediments contamination in the former industrial area of Bagnoli-Coroglio (Naples, Italy). Chem. Ecol.

Boy CE. 2015. Water Quality. Switzerland: Springer.

Breithaupt JL, Smoak JM, Rivera-Monroy VH, Castañeda-Moya E, Moyer RP, Simard M, Sanders CJ. 2017. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. Mar Geol. 390:170–180

Bricu AE, Mihaila D, Graur A, Opera DI, Prisacariu A, Bistricean PI. 2020. Changes in the Water Temperature of Rivers Impacted by the Urban Heat Island: Case Study of Suceava City. Water. 12(1343). 1-24.

Buffle J. 1990. Complexation reactions in aquatic systems. Englewood Cliffs: Prentige Hall.

Chai M, Li R, Tam NFY and Zan Q. 2018. Effects of mangrove plant species on accumulation of heavy metals in sediment in a heavily polluted mangrove swamp in Pearl River Estuary, China. Environ. Geochem. Health. 6, 1–15.

Etemadi H, Smoak JM, Karami J. 2018. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environmental Earth Sciences. 77 (208),1-13.

Gaol ASL, Diansyah D, Purwiyanto AIS. 2019. Analysis of Sea Water Quality in The Southern of Bangka Strait. Maspari. 9(1), 9-16.

Greenberg AE. 2012. Standard methods for the examination of water and wastewater, 22nd ed. American Water Works Association and Water Pollution Control Federation, Washington, DC. 2012

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. 2001. PAST Paleontological Statistics Software Package for Education and Data Analysis.

Hauser BA. 2002. Drinking Water Chemistry, a Laboratory Manual. USA: CRC Press.

Kadarsah A, Salim D, Husain S, Dinata M. 2020. Species Density and Lead (Pb) Pollution in Mangrove Ecosystems, South Kalimantan. Journal Biodjati. 5(1):70-81.

Khasani A, Afiati N, Sulardiono B. 2017. Analisis trophic state index carlson air muara sungai banjir kanal timur, semarang. Journal of Maquares: Management of Aquatic Resources. 6(1). 17-25.

Kulkarni R, Deobagkar D, and Zinjarde S. Metals in mangrove ecosystems and associated biota: a global perspective. Ecotoxicol. Environ. Safety. 2018. 153, 215–228.

Kurlapkar DD, Shaikh SD. 2014. Sediment characteristics of mangroves from Bhatey and Kalabadevi Estuary (Maharashtra), India. Int.J Curr Microbiol App Sci. 3(6), 449-453.

Lee SY, Hamilton S, Barbier EB, Primavera J, Lewis RR. 2019. Better restoration policies are needed to conserve mangrove ecosystems. Nature Ecology & Evolution. 3(6), 870– 872.

Lovelock CE, Ball MC, Feller IC, Engelbrecht BMJ, Ewe ML. 2021. Variation in hydraulic conductivity of mangroves: influenceof species, salinity, and nitrogen and phosphorus availability. Physiologia Plantarum. 127: 457–464.

Luthansa UM, Titah HS, Pratikno H. 2021. The Ability of Mangrove Plant on Lead Phytoremediation at Wonorejo Estuary, Surabaya, Indonesia. Journal of Ecological Engineering. 22(6), 253-268.

Muarif. 2016. Characteristics of Water Temperature in Aquaculture Pond. Journal Mina Sains. 2(2) 96-101.

Mustofa MS, Iswari R, Luthfi A, Kristiwati E, Anugrah RD. 2020. Reinterpretation of Maritime Identity of Small Fishermen on the North Coast of Semarang City. Proceedings of the International Conference on Social Science, Political Science, and Humanities ICOSPOLHUM 2020.

Nguyen A, Le BVQ, Richter O. 2020. The Role of Mangroves in the Retention of Heavy Metal (Chromium): A Simulation Study in the Thi Vai River Catchment, Vietnam. Int J Environmental Resourches Public Health. 17(16) 56-62.

Nurimansyah E, Soeprobowati TR, Murningsih M. 2015. Distribusi Vertikal Diatom Epipelik di Muara Sungai Banjir Kanal Timur Semarang. Jurnal Akademika Biologi. 4 (4):1-7.

Octaviana A, Prasetyo Y, Ammarrohman F.J. 2020. Analisis Perubahan Nilai Total Suspended Solid Tahun 2016 Dan 2019 Menggunakan Citra Sentinel 2a (Studi Kasus : Banjir Kanal Timur, Semarang). Jurnal Geodesi Undip. 9(2). 167-176.

Park K, Lee MH. 2019. The Development and Application of the Urban Flood Risk Assessment Model for Reflecting upon Urban Planning Elements. Water.11(2), 1-17.

Patel P, Raju NJ, Reddy BCSR, Suresh U, Sankar, DB, Reddy TVK. 2018. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: Risk assessment and environmental implications. Environ. Geochem. Health. 40, 609–623.

Puspitasari R, Purbonegoro T. 2016. Ecological Asessment In Semarang Coastal Area Based on Sediment Bioassay Approach Using Green Mussel Larvae. IJMS. 21(4), 185-190.

Putra ISW, Hermawan F, Hatmoko, JUW. 2020. Penilaian Kerusakan Dan Kerugian Infrastruktur Publik Akibat Dampak Bencana Banjir Di Kota Semarang. Jurnal Pengembangan Teknik Sipil, 2(2).

Renald A, Tjiptoherijanto, P, Suganda, E, Djakapermana RD. 2010. Toward resilient and sustainable city adaptation model for flood disaster prone city: case study of Jakarta Capital Region. Procedia- Social and Behavioral Science. 227, 334-340.

Rinawati, Hodayat D, Suprianto R, Dewi PS. 2016. Penentuan Kandungan Zat Padat (Total Dissolve Solid Dan Total Suspended Solid di Perairan Teluk Lampung. Anility: Analytical and Environmental Chemistry. 1(1). 36-45.

Samui P, Kim D, Ghosh C. 2018. Integrating Disaster Science and Management Global Case Studies in Mitigation and Recovery. Amsterdam: Netherland, Elsevier.

Sholihah Q, Kuncoro W, Wahyuni S, Suwandi S.P, Feditasari E.D. 2019. The analysis of the causes of flood disasters and their impacts in the perspective of environmental law. IOP Conf. Series: Earth and Environmental Science. 437.

Siahaan IN, Wasiq J, Kismartini. 2021. Mangrove management strategy to support fisheries in Mangunharjo Village, Semarang City. ICENIS. 202.

Soedarsono, Arief R. 2012. Prediksi Amblesan Tanah (Land Subsidence) Pada Dataran Aluvial di Semarang Bagian Bawah. Prosiding: Semnas Kebijakan dan Strategi dalam pembangunan infrastruktur pengembangan wilayah berbasis Green Technology. Semarang, Indonesia July 10, 1-8.

Soeprobowati TR, Suedy SWA, Lubis AR, Miller JR. 2020. Pollen and diatom evidence of sea water intrusion, east flood canal (Banjir Kanal Timur), Semarang, Indonesia. Environmental Earth Sciences. 79:462.

Subianto MH, Prayogo P, Gustina RD, Syahrani AG, Sihalolo DA, Nurrokhmi SR, Royson R.J, Debby TR, Haulah L, Hapsari DO, Syahlisben, HR. 2019. The Development of Banjir Kanal Timur Riverfront Settlement on the concept of Eco-Riverwalk Village (Case Study: Kelurahan Mlatiharjo, Kecamatan Semarang Timur). Ruang. 5(2), 104-113.

Usman AR, Lee SS, Awad YM, Lim KJ, Yang JE, Ok YS. 2012. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated locations, Korea. Chemosphere. 87(8), 872-878.

Wahyudi D. 2015. Optimalisasi Potensi Mangrove Untuk Meningkatkan Perekonomian Masyarakat Pesisir. Prosiding Seminar Nasional UTCC. Semarang, Indonesia.

Wang JZ, Fu H, Qiao F. Liu. 2019. Assessment of eutrophication and water quality in the estuarine area of lake Wuli, lake Taihu, China. Science of the Total Environment. 650, 1392–1402.

Widiarsa DA, Winarno R, Haryanto W. 2020. Pengaruh Intrusi Airlaut dan Banjir Pasang (Rob) terhadap Sifat Berat Jenis dan Berat Satuan Tanah Lempung Aluvial di Kota Semarang. Jurnal Geosains dan Teknologi. 3(3). 129-134.

Wirasatrio FD, Anggoro S, Purwanti F. 2017. Persepsi Dan Aspirasi Masyarakat Terhadap Implementasi Pengembangan Kampung Bahari Tambak Lorok Semarang Berbasis Ekowisata. Journal of Maquares. 6(3) 181-190.

Yan Z, Sun X, Xu Y, Zhang Q, Li X. 2017. Accumulation and Tolerance of Mangroves to Heavy Metals: a Review. Current Pollution Report. 3, 302-317.